Anisotropic adaptivity for the finite element solutions of three-dimensional convection-dominated problems
نویسندگان
چکیده
منابع مشابه
Multilevel Homotopic Adaptive Finite Element Methods for Convection Dominated Problems
A multilevel homotopic adaptive finite element method is presented in this paper for convection dominated problems. By the homotopic method with respect to the diffusion parameter, the grids are iteratively adapted to better approximate the solution. Some new theoretic results and practical techniques for the grid adaptation are presented. Numerical experiments show that a standard finite eleme...
متن کاملNumerical Studies of Adaptive Finite Element Methods for Two Dimensional Convection-Dominated Problems
In this paper, we study the stability and accuracy of adaptive finite element methods for the convection-dominated convection-diffusion-reaction problem in the twodimension space. Through various numerical examples on a type of layer-adapted grids (Shishkin grids), we show that the mesh adaptivity driven by accuracy alone cannot stabilize the scheme in all cases. Furthermore the numerical appro...
متن کاملLifting solutions of quasilinear convection-dominated problems
The steady state of the quasilinear convection-diffusion-reaction equation ut −∇(D(u)∇u) + b(u)∇u+ c(u) = 0 (1) is studied. Depending on the ratio between convection and diffusion coefficients, equation (1) ranges from parabolic to almost hyperbolic. From a numerical point of view two main difficulties can arise related with the existence of layers and/or the non smoothness of the coefficients....
متن کاملFinite element approximation of high-dimensional transport-dominated diffusion problems
High-dimensional partial differential equations with nonnegative characteristic form arise in numerous mathematical models in science. In problems of this kind, the computational challenge of beating the exponential growth of complexity as a function of dimension is exacerbated by the fact that the problem may be transport-dominated. We develop the analysis of stabilised sparse finite element m...
متن کاملThree anisotropic benchmark problems for adaptive finite element methods
In this paper we provide three benchmark problems with known exact solutions that can be used to assess the ability of adaptive finite element algorithms to handle anisotropically-behaved solutions. The first one is a Poisson equation with a smooth solution that only changes in one spatial direction. The second one is a singularly-perturbed linear elliptic equation whose solution exhibits a bou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Fluids
سال: 2002
ISSN: 0271-2091,1097-0363
DOI: 10.1002/fld.302